S.E./SEM_III/Rev. 2012 (CBSGS)/I.T. /MAY2018

Applied Maths III Q.P. Code: 23005

	[Time: Three Hours]	arks:80]
	Please check whether you have got the right question paper. N.B: 1. Question no. 1 is compulsory. 2. Attempt any three of the remaining. 3. Figures to the right indicate full marks.	
a)	Find the Laplace transform of e^{-4t} sinh t sin t.	05
b)	Find half-range sine series for $f(x) = \frac{\pi}{4}$ in $(0, \pi)$.	05
c)	Find the values of Z for which the following function is not analytic. Z= sin hu cos v + i cos hu sinv.	05
d)	Show that $\nabla \left[\frac{(\bar{a} \cdot \bar{r})}{r^n} \right] = \frac{\bar{a}}{r^n} - \frac{n(\bar{a} \cdot \bar{r})\bar{r}}{r^{n+2}}$, where \bar{a} is a constant vector.	05
a)	Find the inverse Z- transform of $F(z) = \frac{1}{(z-3)(z-2)}$ if $ z < 2$.	06
b)	Verify Laplace's equation for $u = \left(r + \frac{a^2}{r}\right) \cos \theta$ also find v and f(z).	06
c)	Find the Fourier series for the periodic function $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$	08
	State the value of $f(x)$ at $x=0$ and hence, deduce that π^2	
	$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	
a)	Find $L^{-1}\left[\frac{1}{(S-3)(S-3)^2}\right]$ using convolution theorem.	06
b)	Show that the set of functions $\sin x$, $\sin 2x$, $\sin 3x$, is orthogonal on the interval $[0,\pi$]	06
c)	Verify Green's Theorem for $\int_C \bar{F}$. $d\bar{r}$ where $\bar{F} = x^3i + xyj$ and c is the triangle whose vertices are $(0,2)$, $(2,0)$ and $(4,2)$.	08

Q.4

Q.6

a) Find Laplace transform of $f(t) = \begin{cases} a \sin p t, & 0 < t < \frac{\pi}{p} \\ 0, & \frac{\pi}{p} < t < \frac{2\pi}{p} \end{cases}$ and $f(t) = f\left(t + \frac{2\pi}{n}\right)$.

06

b) Show that $\overline{F} = (y^2-z^2+3yz-2x)i + (3xz+2xy)j + (3xy-2xz+2z)k$ is both solenoidal and irrotational.

06

c) Find half range cosine series for f(x) = x, 0 < x < 2. Hence deduce that $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + - - - - = -$

08

Q.5 a) Show that $\iint_S (\nabla r^n) . d\bar{s} = n(n+1) \iiint_V r^{n-2} dv$ using Gauss's Divergence theorem.

06

b) Find the Z-transform of $\{k^2 e^{-ak}\}, k \ge 0$.

06

c) (i) Find $L^{-1}\left[\frac{s^2+2s+3}{(s^2+2s+2)(s^2+2s+5)}\right]$

08

- (ii) Find $L^{-1}\left[\frac{s^2+a^2}{\sqrt{s+b}}\right]$
- a) Use Laplace transform to solve,

06

 $\frac{d^2y}{dt^2} + 4 \frac{dy}{dt} + 8y = 1 \text{ where, } y(0) = 0, y'(0) = 1$ b) Find the bilinear transformation which maps the points $z=\infty$, i, 0 onto the points $0,i,\infty$

06

c) Express the function $f(x) = \begin{cases} \frac{\pi}{2}, & \text{for } 0 < x < \pi \\ 0, & \text{for } x > \pi \end{cases}$

08

for Fourier Sine Integral and Show that

$$\int_0^\infty \frac{1 - \cos \pi w}{w} \sin wx \ dw = \frac{\pi}{2} \quad \text{when } 0 < x < \pi$$

*******All THE BEST******

SEISEMIII (CBSGS) /IT. IM AY 2018

ADC

06

Q. P. Code: 36192

	(3 Hours)	[Total Marks: 80	330
N.B.: (1) Question No. 1 is compulsory. (2) Solve any three questions out of (3) Figures to right indicate full man (4) Assume suitable data where nec	rks.		
 Q1. Solve i) Convert (13.078125)₁₀ to binary. ii) Convert (B73D)_H into octal. iii) Convert (436)₈ into hexadecimal. iv) Convert (845)₁₀ into gray code. 		(4)	
b) Sketch typical illumination characteristic	s for a photodiode and explain	n the theory of device. (4)	
c) Derive the equation of stability factor for	voltage divider bias circuit.	(4)	
d) Implement a full adder using 8:1 Demult	iplexer.	(4)	
e) Write truth table and excitation table of J	K flip flop.	(4)	
2. a) Explain inverting summing amplifier	using op-amp. Derive the exp	ression for output voltage. (8)	
b) What are different methods used to impre	ove CMRR in differential amp	olifier. (8)	
e) Draw circuit diagram & waveforms of m	onostable multivibtrator using	g IC555. (4)	
 3. a) Design 2 bit magnitude comparator. b) Using K-map realize the following exp Y= ∑m (1, 3, 4, 5, 7, 9, 11, 13, 15 		(10) (5))
(c) Convert JK FF to D FF.		(5)	
4.a) With the help of neat circuit diagram exvoltage and variable load.b) Explain dataflow modeling style with sc) Compare schottky diode with PN junct	suitable example.	diode regulator for variable i (8) (6) (6)	input
5. (a) Design a MOD-12 Asynchronous do (b) What do you mean by operational at (c) Write VHDL for full adder.		(8) agram of opamp. (8) (4)	
6.(a) Write a short note on ASCII code and		(8)	

(c) Explain the difference between the integrator & differentiator . Give one application of each.

June 2018.

S.E. SEMILI (IT) (BSGS)

QP CODE: 39738

(3 hours)

[Total Marks: 80]

B.I	D	
- 174	D	
0.5	_	-

- 1. Question 1 is compulsory.
- 2.Out of remaining attempt any three
- 3. Assume suitable data wherever required.
- 4. Figures to the right indicate full marks.
- Q1 a Differentiate between File system with database management system

[5]

b Describe roles of DBA

[5]

c Explain aggregate functions of DBMS

[5]

d Describe Generalization and specialization with example.

[5]

Q 2 a Consider following database tables

[10]

Emp (eid , ename , salary , Address , deptid)

Dept (Deptid , Dname , Address)

Construct the following SQL queries for this relational database.

- i) Find name of employee whose address is "Bandra"
- ii) Find name of employee earning highest salary
- iii) Find all employee working for "HR" department
- iv) Delete record of employee with minimum salary
- v) Display Name of departments of the company
- b Explain operations of file in details

[10]

Q 3 a Describe design guide lines for relational schema with example

[10]

b List various types of constraints in Database? Explain any two.

[10]

Q4 a Why joins are required? What are the types of Joins? Explain each with example.

[10]

b Explain Stored Procedure & Function with example

[10]

Q5 a Draw and explain Database Management System Architecture

[10]

b Explain conflict and view serializability with example

[10]

Page 1 of 2

A6F5D93F0C8CFDF3A3CB9DC440FD5E05

QP CODE: 39738

[5]

[5]

[5]

[5]

Q 6 Write short note on following

a Role and Responsibilities of DBA.

b Single Level Indexes

c Hashing Technique

d Set Operations